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Abstract: In this paper, a compressing and reconstruction method for a noise video based on 
Compressed Sensing (CS) theory is proposed. At first, the CS theory is presented. Then the noise video 
is estimated from noisy measurement by solving the convex minimization problem. The video 
recovery algorithms based on gradient-based method is used to compressing and reconstructing the 
noise signal. And a compressive sensing algorithm with gradient-based method is proposed. At last, 
the performance of the proposed approach is shown and compared with some conventional 
algorithms. Our method can obtain best results in terms of peak signal noise ratio (PSNR) than those 
achieved by common methods with only a little runtime. 
Index Terms—Noisy Video, Compressed Sensing, signal recovery algorithms, Restricted Isometry 
Property, gradient-based 
 
1. INTRODUCTION 

The well-known Nyquist/Shannon sampling theorem that the sampling rate must be at least 
twice the maximum frequency of the signal is a golden rule used in visual and audio electronics, 
medical imaging devices and so on. Compressed Sensing (CS) is a sampling paradigm that provides the 
signal compression at a rate significantly below the Nyquist/Shannon rate. Based on the CS theory, a 
sparse or compressible signal can be represented by the fewer number of bases than the one 
required by Nyquist/Shannon theorem, when it is mapped to the space with bases incoherent to the 
sparse data space [1, 2]. The major algorithmic challenge in compressive sampling is to approximate a 
signal given a vector of samples. The literature describes a huge number of approaches to solving this 
problem. Such as Orthogonal Matching Pursuit (OMP) [3], Greedy Basis Pursuit (GBP)[4], Iteratively 
Reweighted Least Square (IRLS)[5], CoSaMP[6] , Suspace Pursuit(SP)[7], and so on. 

The contents of most references are about imagery and raw data compressing and 
reconstruction based on CS theory. CS has been successfully applied to MRI [8], with consistent 
benefits in a clinical setting [9]. In [10], an iterative image reconstruction method in X-ray CT is 
proposed based on compressive sensing (CS). Reference [11] proposes a new method of fast encoding 
for Synthetic Aperture Radar (SAR) raw data by using the CS theory to complete SAR raw data 
compressing and reconstruction. But, there are so many problems in compressive sampling to 
approximate a noise signal [12, 13]. And noise video compressive sampling is also a challenge 
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research problem. In this paper, a compressive sensing method for noisy video reconstruction based 
on gradient-based are studied. 

This paper is organized as follows. In Section 2, the CS theory is presented. The processing of 
noisy video compressive sensing is introduced in Section 3. In Section 4, Noisy video reconstruction 
base on compressive sensing with gradient-based method is presented, and fast gradient-based 
compressed sensing reconstruction algorithm (FGB-CS)recovery algorithm are presented in detail. 
Experimental  
results are obtained with the different methods in Section 5. Finally, the conclusions are summarized 
at the end of this paper. 
 
2. Compressed Sensing theory 

CS is based on the assumption of the sparse property of signal and incoherency between the 
bases of sparse domain and the bases of measurement vectors. CS has three major steps: the 
construction of k-sparse representation, the compression, and the reconstruction. The first step is the 
construction of k-sparse representation, where k is the number of the non-zero entries of sparse 
signal. Most natural signal can be made sparse by applying orthogonal transforms such as Wavelet 
Transform, Fast Fourier Transform, and Discrete Cosine Transform. This step is represented as [2]. 

Ts x= Ψ                                  (1) 

where x  is an N-dimensional non-sparse signal; s  is a weighted N-dimensional vector (sparse 

signal with k nonzero elements), and Ψ  is an N × N orthogonal basis matrix. The second step is 
compression. In this step, the random measurement matrix is applied to the sparse signal according to 
the following equation 

Ty s x= Φ = ΦΨ                              (2) 

where Φ  is an M × N random measurement matrix (M < N). 
Let M be the number of measurements (the row dimension of y) sufficient for high probability of 

successful reconstruction, and M is determined by  

2 ( , ) logM C k Nμ≥ Φ Ψ .                              (3) 

For some positive constant C, ( , )μ Φ Ψ is the coherence between Φ  andΨ , and defined by 

,
( , ) m ax | , |i ji j

Nμ φ ψΦ Ψ = < > .                        (4) 

If the elements in φ  and ψ  are correlated, the coherence is large. Otherwise, it is small. From 

linear algebra, it is known that ( , ) [1, ]Nμ Φ Ψ ∈ . In the measurement process, the noise may 

occur. The noise is added into the compressed measurement vector as follows 
y s noise= Φ +                          (5) 

where noise is an M-dimensional noise vector.  
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As expected, signal x in (5) may be estimated from noisy measurement y by solving the convex 
minimization problem, called second-order cone program (SOCP), as follows. 

1

2

|| ||

|| ||

 

 : T

minimize

subje

x

x yct to εΦΨ − ≤
                          (6) 

where ε  is a bound of the amount of noise in the data. 
 
3 The processing of noisy video compressive sensing 

The framework of our approach is shown in Figure 1. For a video, it mainly contains the following 
steps: 

(i) Read each frame, make it sparse by orthogonal transformation, consider its compression and 
recovery as a convex optimization problem, and then apply for the gradient-based method. Here, we 
assume the problem to be convex with the Lipschitz gradient. 

(ii) Aiming at improving the efficiency, we replace an iteration parameter by the Lipschitz 
constant and a fast compressive sensing algorithm with gradient-based method is proposed. 

(iii) Reconstruct each frame based on compressive compressing. 
The processing of noisy video compressive sensing approach is shown in Figure 1. 

 
Fig 1 The processing of noisy video compressive sensing 

 
4 Noisy video reconstruction compressive sensing  
4.1 Convex optimization problems based on Gradient-based methods 

At first, we consider the unconstrained minimization problem of a convex function ( )g x  

min{ ( ) : }.ng x x R∈                        (7) 
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One of the simplest methods for solving eq.(8) is the gradient algorithm which generates a sequence 

kx  via 

0 1 1, ( ),n
k k k kx R x x t g x− −∈ = − ∇               (8) 

where 0kt >  is a suitable step size. It is very well known that the gradient iteration Eq.8 can be 

viewed as a proximal regularization[13] of the linearized function g at 1kx − , and written 

equivalently as 

2
1 1 1 1 2

1arg min{ ( ) ( ), ( ) || || }
2k k k k k

x k

x g x x x g x x x
t− − − −= + < − ∇ > + − . (9) 

Adopting this same basic gradient idea to the nonsmooth 1l  regularized problem 

1min{ ( ) || || : }ng x x x Rλ+ ∈                         (10) 

leads to the iterative scheme [14] 

2
1 1 1 1 2 1

1arg min{ ( ) , ( ) || || || || }
2k k k k k

x k

x g x x x g x x x x
t

λ− − − −= + < − ∇ > + − + .   (11) 

After ignoring constant terms, this can be rewritten as 

2
1 1 2 1

1arg min{ || ( ( )) || || || }
2k k k k

x k

x x x t g x x
t

λ− −= − − ∇ + .   (12) 

 
4.2 Noise signal optimization with Lipschitz gradient 

The noise is added into the compressed measurement vector as follows 
y s noise= Φ +                        (13) 

where noise  is an M-dimensional noise vector. We think about an objective function

( ) ( ) ( )F x g x n x= + , which is a composite type convex function, the Lipschitz gradient is 

named[15]  

2 2|| ( ) ( ) || ( ) || || ,g x g y L g x y for every x y∇ −∇ ≤ − ,        (14) 

where  ( )L g  > 0 is a (Lipschitz) constant. where || . ||  denotes the standard Euclidean norm and 

L(g) > 0 is the Lipschitz constant of g∇ . And we approximate the function ( )F x  at point 1kx −  by 

quadratic function  

2
1 1 1 1 2( , ) (x) , ( ) || || ( )

2L k k k k
LQ x x g x x g x x x n x− − − −= + < − ∇ >+ − +       (15) 
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which admits a unique minimizer 

1 1( ) arg min{ ( , ), }n
k L k

x
PL x Q x x x R− −= ∈ .                     (16) 

Simple algebra shows that (ignoring constant terms in 1kx − ) 

2
1 1 1 2

1( ) argmin{ || ( ( )) || ( )}
2k k k

x

LPL x x x g x n x
L− − −= − − ∇ + .            (17) 

Clearly, the basic step in Eq.9 is replaced by 

1( )k kx PL x −=                                (18) 

with L set to 1/ kt . Note that as long as the constant L in Eq.14 is taken to be no less than Lipschitz 

Constant ( )L g , it follows that [16]  

2
1 1 1 1 2( ) ( ) ( ) ( ), || || ( )

2k k k k
Lg x n x g x g x x x x x n x− − − −+ ≤ + < ∇ − > + − + .  (19) 

During our work, we replaced 1/ kt by a constant L  which will be related to the Lipschitz constant 

( )L g . We can find that the right-hand side of Eq.19 is precisely equal to ( , )LQ x y  in Eq.15. In 

other words, ( , )LQ x y  is an easier-to-deal-with convex upper bound of the objective function 

F(x) and by minimizing the upper bound, ( , )LQ x y  with kx  given by Eq.18 offers a tight upper 

bound of F(x),provided that L ≥ L(f) , and 

2
2 2

2

2 ( )
( ) ( )

( 1)k

L f x x
F x F x

k
−

− ≤
+

.                               (20) 

So the convergence is 2(1 / )O k . 

 
4.3 Compressed sensing for noisy video reconstruction  

The major algorithmic challenge in compressive sampling is to approximate a noise signal given a 
vector of samples. The literature describes few numbers of approaches to solving this problem. In our 
method, Eq.(6) is often found more natural to study the closely related problem 

2
2 1min || || || ||Tmize x y xλΦΨ − + .            (21)  

We begin with considering the problem of Eq.21 assumed to be smooth and convex with smooth 
Lipschitz gradient. For any L > 0, compressed sensing of noisy signals formulated by Eq.21 becomes, 
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2
1 1arg min{ || || || || }

2k k
x

Lx x x xλ−= − +       (22) 

where 1( )k kx PL x −= , so 

2
1 1 2 1

1arg min{ || ( ( )) || || || }
2k k k

x

Lx x x f x x
L

λ− −= − − ∇ +        (23) 

or equivalently 

2
2 1arg min{ || || || || }

2k k
x

Lx x d xλ= − +                (24) 

where 
1 1

1 ( )k k kd x f x
L− −= − ∇ . According to Eq.22, this dk can be rewritten as 

1 1
1 ( ) ( )T T T

k k kd x x y
L− −= − ΦΨ ΦΨ − .              (25) 

Because both the 1-norm and square of the 2-norm are separable, i.e. each of them is mere the sum 

of n nonnegative terms and each of these terms involves only a single (scalar) variable, the iterate kx

in Eq.24 can be computed exactly by a straightforward shrinkage step (assuming kd  in Eq.24 has 

been calculated) as 

( )k L kx dλ= Γ                             (26) 

where αΓ  is an shrinkage operator which maps nR  to nR  with the i -th entry of the output 

vector given by 

( ) | (| | ) sgn( )i i id d dα α +Γ = −                   (27) 

where ( ) max( ,0)u u+ = .  

4.3 FGBCS algorithm 
In our study, a gradient-based compressive sensing algorithm (FGBCS) for noisy video 

reconstruction method is proposed, in which FGBCS algorithm is used to noise signal recovery, the 
detail algorithm is shown as follows. 

FGBCS(Φ ,Ψ ,s, λ, K) 
Input: 
(i) ( ) tan ( )L L g a Lipschitz cons t of g x= − ∇  in Eq.14.; 

(ii)a video and its length is P . Each frame is s . N NR ×Ψ∈ is a signal sparse transform matrix,  

(iii)a measurement matrix M NR ×Φ∈ , px s= Φ ; the iteration counter K and noise parameter 

λ . 
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Procedure. 

For frame=1 to P  

Initialize, 1 0 1, 1ny x R t= ∈ = . ps s= Ψ ; 

If (1 k K≤ ≤ ) Compute  

(i) ( )k kx PL y= by solving the problem in Eq.18. 

(ii) 
2

1

1 1 4
2

k
k

t
t +

+ +
=  1 1

1

1( )( )k
k k k k

k

ty x x x
t+ −

+

−
= + −  

End 
Output:  

A sparse approximation kx of the each frame s  then reconstruction result signal ' T
ks x= Ψ  

End 
 
5 Experiment Result 

In order to evaluate the quality of the reconstructed results, the mean square error (MSE) and 
peak signal noise ratio (PSNR) can be utilized. They are defined as [17] 

  ^
2

1 1

1 ( ( , ) ( , ))
M N

i j

MSE f i j f i j
M N = =

= −
× ∑∑        (28) 

2255P S N R 10 lg
M SE

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                    (29) 

Where M and N are the image dimensions, f̂  is the denoised image, and f is the original 

noiseless image. During formula (28) ,255 means the pixel values is 0 to 255 in a optical gray image. 
Many researchers used PSNR to estimate the result in image processing, In our study, the PSNR is used 
to compare the experiment result. 

The video gsalesmang15.avi(total 48 frames)[18] was used as a test data in our experiment. 
CoSaMP, GBP, IRLS and OMP are chosen as the comparison methods. The video was degraded by rand 
noise (σ=15). The 1th frame and its noisy image are shown as in figure 2(a) and figure 2(b). The 
reconstruction results based on different methods with the matrix’s rows M=230 can be shown as 
figure 2(c-g). During FGbCS ,we set λ=20 and K=40, and the result can be shown as figure 2(h). 

    
(a)frame=1          (b) Noise            (c)CoSaMP(25.97)     (d)GBP(25.34) 
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(e)IRLS(27.94)        (f)OMP(24.83)         (g)SP(25.72)        (h) FGbCS(28.95) 
Fig.2 Noisy video reconstructed results in terms of PSNR in frame 1 

The 10th frame and its noisy image are shown as in figure 3(a) and figure 3(b). The reconstruction 
results based on different methods with the matrix’s rows M=230 can be shown as figure 3(c-g). 
During FGbCS ,we set λ=20 and K=40, and the result can be shown as figure 3(h). 

    
(a)frame =10            (b)Noise        (c)CoSaMP(25.97)    (d)GBP(25.28) 

    
(e)IRLS(27.70)       (f)OMP(24.70)      (g)SP(25.64)         (h)FGbCS(28.89) 

Fig.3 Noisy video reconstructed results in terms of PSNR in frame 10 
The 20th frame and its noisy image are shown as in figure 3(a) and figure 3(b). The reconstruction 

results based on different methods with the matrix’s rows M=230 can be shown as figure 3(c-g). 
During FGbCS , we set λ=20 and K=40, and the result can be shown as figure 3(h). 

    
(a)frame =20       (b)Noise            (c)CoSaMP(26.07)     (d)GBP(25.28) 
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(e)IRLS(27.76)     (f)OMP(24.99)         (g)SP(25.71)        (h)FGbCS(28.94) 

Fig.4 Noisy video reconstructed results in terms of PSNR in frame 20 
In order to compare their reconstruction performance in detail, the more experiments were also 

done. The reconstruction average time and PSNR with different rows of measurement matrix can be 
shown as figure 5(a,b). 

 
(a) Average PSNR comparisons based on different measurement matrix rows 

(b) Average runtime comparisons based on different measurement matrix rows 
Fig.5 Quantization comparisons in noisy video reconstruction 

We can see from figure 5 that, 
 (i) The noisy video reconstruction accuracy decrease with the increase of measurement matrix 

rows. And among of those methods, FGB algorithm can obtain best result than those other methods, 
and the second is IRLS algorithm. 

(ii) The noisy video reconstruction accuracy decrease with the increase of measurement matrix 
rows. The method based on OMP and FGB algorithm can run the fastest than those other methods in 
noise signal reconstruction, and SP, CoSaMP, GBP and IRLS is in the second, third and fourth. Among of 
them, the runtimes decrease with the increase of measurement matrix rows. IRLS method can get 
good reconstruction result, but it spends the most time. 

We can see from figure 5 that, the proposed method can obtain best reconstruction result 
comparing with OMP ,SP, CoSaMP, GBP and IRLS. 

 
 
 
6 Conclusion 

There are many ices in compressive sampling to approximate a noise signal given a vector of 
samples. And there many algorithms, such as OMP, SP, CoSaMP, GBP and IRLS are proposed to solve 
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the problem. But those algorithms are not good for noisy video reconstruction. Among of them, IRLS 
achieves the good performance on low error, but it spends the most time. This paper presented here 
has focused on the formulation of the compressed sensing for noise signal reconstruction algorithm. 
The noisy and video is estimated as a convex minimization problem. And the gradient-based methods 
is used to solve the problem. In order to improve the run speed, the step size in gradient iteration is 
replaced by a constant 1/L which is related to the Lipschitz constant. We proposed a new compressive 
sensing for noisy video reconstruction methods base on gradient-based. The experiments have been 
shown that the proposed method can obtain best reconstruction result comparing with OMP ,SP, 
CoSaMP, GBP and IRLS. 
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