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Abstract
Purpose – The purpose of this paper is to develop an improved compressive sensing algorithm for solder joint imagery compressing and recovery.
The improved algorithm can improve the performance in terms of peak signal to noise ratio (PSNR) of solder joint imagery recovery.
Design/methodology/approach – Unlike the traditional method, at first, the image was transformed into a sparse signal by discrete cosine transform;
then the solder joint image was divided into blocks, and each image block was transformed into a one-dimensional data vector. At last, a block compressive
sampling matching pursuit was proposed, and the proposed algorithm with different block sizes was used in recovering the solder joint imagery.
Findings – The experiments showed that the proposed algorithm could achieve the best results on PSNR when compared to other methods such
as the orthogonal matching pursuit algorithm, greedy basis pursuit algorithm, subspace pursuit algorithm and compressive sampling matching
pursuit algorithm. When the block size was 16 � 16, the proposed algorithm could obtain better results than when the block size was 8 � 8 and
4 � 4.
Practical implications – The paper provides a methodology for solder joint imagery compressing and recovery, and the proposed algorithm can
also be used in other image compressing and recovery applications.
Originality/value – According to the compressed sensing (CS) theory, a sparse or compressible signal can be represented by a fewer number of
bases than those required by the Nyquist theorem. The findings provide fundamental guidelines to improve performance in image compressing and
recovery based on compressive sensing.

Keywords Assembly, Solder joints, Solder, Pin-in-paste

Paper type Research paper

1. Introduction
Compressed sensing (CS) is a sampling paradigm that
provides the signal compression at a rate significantly lower
than the Nyquist rate. Based on the CS theory, a sparse or
compressible signal can be represented by a smaller number of
bases than those required by the Nyquist theorem when it is
mapped to the space with bases incoherent to the sparse data
space (Donoho, 2006; Donoho et al., 2006). The contents of
most references are about imagery and raw data compressing
and reconstruction based on the CS theory. CS has been
successfully applied to magnetic resonance imaging (Lustig
et al., 2007), with consistent benefits in a clinical setting
(Vasanawala et al., 2010). In a study by Jørgensen et al.
(2012), an iterative image reconstruction method in X-ray
computed tomography (CT) was proposed based on

compressive sensing (CS). Bhattacharya et al. (2007) proposes
a new method of fast encoding for synthetic aperture radar
(SAR) raw data by using the CS theory to complete SAR raw
data compressing and reconstruction.

Nowadays, surface mount technology (SMT) components are
widely used in the electronics industry. To detect surface-related
defects such as pseudo solder, which is not a hidden open joint
(Wu and Zhang, 2011), insufficient solder, component shift,
wrong component use and tombstoning (Janoczki et al., 2010),
automatic inspection technologies, such as automatic optical
inspection (AOI) and X-ray inspection, have been applied to
SMT-based production and proved to be a useful supplement to
circuit and functional testing (Hongwei et al., 2011; Benedek
et al., 2013). To improve the inspection rate of defects, some
image processing technologies, such as image compression,
image enhancing and image filtering are used in AOI and SPI
(Xiong et al., 2012). Usually, wavelet transform and wavelet
package transform are used in image compression (Karami et al.,
2012; Bayazit, 2011). Due to the steadily increasing resolution of
the image acquisition platforms, the amount of image data
produced is now constrained by storage capabilities and the slow
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inspection speed (Wu et al., 2013). Also, CS can be used in
SMT, such as solder joint inspection, solder joint image
processing and so on. There are few references about solder joint
imagery data compressing and reconstruction based on the CS
theory. In this paper, solder joint imagery data compressing and
reconstruction based on CS have been studied.

This paper is organized as follows. In Section 2, the CS theory
is presented. The signal recovery algorithms are presented in
Section 3, and then some CS recovery algorithms are described
in detail. The methodology of this paper and the block
compressive sampling matching pursuit (CoSaMP) algorithm
are presented in Section 4. Experimental results were obtained
with the proposed method using solder images in Section 5.
Finally, the conclusions are summarized at the end of this paper.

2. CS theory

2.1 Compressed sensing
CS is based on the assumption of the sparse property of a
signal and incoherency between the bases of sparse domain
and the bases of measurement vectors. CS has three major
steps:
1 the construction of k-sparse representation;
2 the compression; and
3 the reconstruction.

The first step is the construction of k-sparse representation,
where k is the number of the non-zero entries of the sparse
signal. Most natural signals can be made sparse by applying
orthogonal transforms such as wavelet transform, fast Fourier
transform and discrete cosine transform (DCT). This step is
represented as (Candes and Wakin, 2008):

s � �Tx (1)

where x is an N-dimensional non-sparse signal, s is a weighted
N-dimensional vector (sparse signal with k non-zero elements)
and � is an N � N orthogonal basis matrix. The second step is
compression. In this step, the random measurement matrix is
applied to the sparse signal according to the following equation:

y � �s � ��Tx (2)

where � is an M � N random measurement matrix (M � N).
Let M be the number of measurements (the row dimension of

y) sufficient for a high probability of successful reconstruction,
and M is determined by:

M � C�2(�, �)k log N (3)

For some positive constant C, ���, �� is the coherence
between � and � and is defined by:

�(�, �) � �N max
i,j

��	i, 
j � � (4)

If the elements in 	 and 
 are correlated, the coherence is
large. Otherwise, it is small. From linear algebra, it is known
that ���, �� � �1, �N�.

2.2 Reconstruction method
Successful reconstruction depends on the measurement
matrix � that complies with restricted isometry property
(RIP). RIP is defined as follows (Cai and Wang, 2011):

(1 � 
k)��s��2
2 � ���s��2

2 � (1 � 
k)��s��2
2 (5)

where ����2 defines the l2 norm and 
k is the k-restricted
isometry constant of a matrix �. RIP is used to ensure that all
subsets of k columns taken from � are nearly orthogonal. It
should be noted that � has more columns than rows; thus, �
cannot be exactly orthogonal.

The reconstruction is the optimization problem to solve (2).
In (2), when � is an identity matrix. The following equation
is the reconstruction problem used in this study:

arg max
x

�x�0 s.t. y � �x (6)

3. Signal recovery algorithm
The major algorithmic challenge in compressive sampling is to
approximate a signal, given a vector of samples. The literature
describes a huge number of approaches to solving this
problem. They fall into three rough categories:
1 Convex optimization: These techniques solve a convex

program whose minimizer is known to approximate the
target signal. Many algorithms have been proposed to
complete the optimization, including basis pursuit (BP)
(Bazerque and Giannakis, 2013), projected gradient
methods (Figueiredo et al., 2007) and iterative hard
thresholding (Blumensath and Davies, 2009).

2 Iterative greedy algorithms: These methods build up an
approximation one step at a time by making locally
optimal choices at each step. Examples include matching
pursuit (MP) (Tropp and Gilbert, 2007), orthogonal
matching pursuit (OMP), regularized OMP (Needell
et al., 2009), stage-wise OMP (StOMP) (D. L. Donoho
et al., 2012) and CoSaMP (Needell et al., 2010).

3 Combinatorial algorithms: These methods acquire highly
structured samples of the signal that support rapid
reconstruction via group testing. This class includes
Fourier sampling (A. Gilbert et al., 2007), HHS pursuit
(Gilbert et al., 2005) and Iwen (Iwen, 2008).

Here, attention is focused on the OMP algorithm, greedy basis
pursuit (GBP) algorithm, subspace pursuit (SP) algorithm
and CoSaMP algorithm (Davenport et al., 2013).

3.1 Orthogonal matching pursuit
OMP is an iterative greedy algorithm that selects, at each step,
the column of measurement matrix which is most correlated with
the current residuals. This column is then added into the set of
selected columns. The algorithm updates the residuals by
projecting the observation onto the linear subspace spanned by
the columns that have already been selected, and the algorithm
then iterates. Compared with other alternative methods, a major
advantage of the OMP is its simplicity and fast implementation.
The following lists the steps of the OMP algorithm.

Algorithm 1. OMP recovery algorithm

Input:
An m � N measurement matrix �, an m-dimensional
data vector v and the sparsity level s of the ideal signal.

Initialization:
Initialize the residual r0 � v, the index set �0 � A and
the iteration counter t � 1.
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Procedure:
1 Find the index �t that solves the easy optimization

problem:

�t � arg max j � 1, . . . d��rt � 1, �j��

If the maximum occurs for multiple indices, break the
tie deterministically.

2 Augment the index set and the matrix of chosen
atoms: �t � �t � 1 � ��t� and �t � ��t � 1 ��t�. We
use the convention that �0 is an empty matrix.

3 Solve a least squares problem to obtain a new
signal estimate:

xt � arg min x�v � �t x�2

4 Calculate the new approximation of the data and
the new residual:

at � �t xt;rt � v � at

5 Increment t and return to step (2) if t � m or
rt � 1 � 0.

6 The estimate ŝ for the ideal signal has non-zero indices
at the components listed in �m. The value of the
estimate ŝ in component �j equals the jth component
of xt.
End

Output:
An estimate ŝ in M � d matrix Rd for the ideal signal, a
set �m containing m elements from {1 . . ., d} and an
N-dimensional approximation am of the data vector v.

3.2 Greedy basis pursuit
GBP is rooted in computational geometry and exploits an
equivalence between minimizing the l1-norm of the
representation coefficients and determining the intersection of
the signal with the convex hull of the dictionary. GBP unifies
the different advantages of previous algorithms. It builds up
representations, sequentially selecting atoms. The following
lists the steps of the GBP algorithm.

Algorithm 2: CS recovery using GBP

Input:
A signal x � Rd, a dictionary D � �
i�i

n � 1 and a
threshold � � 0; a representation of x, consisting of a
set of indices � � �1, � n� and a set of coefficients
A � ��i�i � I, such that x � 	i � I �i
i � �.

Procedure:

Initialize:
1 Select the first atom:

k � arg max
i � �1, � n�

� x, 
i�

2 Compute the initial approximation:

�k � �x, 
k �, I(0) � �k�, A(0) � ��k�;

3 Initialize the biorthogonal system:


̃� � �
k�

4 Initialize the hyperplane:

x̃(0) � �k
k, n � x/
x
, r � x � x̃

Repeat until:
1 Compute the center and plane of rotation:

x̃H � (�
i, n � /�x̃, n � )x̃, for any i � I

v � (r � �r, n � n/�r � �r, n � n)�

2 Project atoms into the n � v-plane and select the
next atom:

k � arg mix
i � �1, � n�

tan �1
�
i � x̃H, n�

�
i � x̃H, v�

3 Compute the new representation and update the
biorthogonal system:

�I, A, 
̃�� � AddAtom(x, I, A, 
k, 
̃�).

4 Discard any extraneous atoms while:

∃ ai � 0, i � I do

�I, A, 
̃�� � SubstractAtom(x, I, A, 
j, 
̃�)

5 Update the hyperplane parameters:

x̃ � 	
i � I

�i
i;

n �
��
k � x̃H, n � v � �
k � x̃H, v � n


��
k � x̃H, n � v � �
k � x̃H, v � n

;

r � x � x̃

3.3 Compressive sampling matching pursuit
CoSaMP is at heart a greedy pursuit algorithm. It is initialized
with a trivial signal approximation, which means that the
initial residual equals the unknown target signal. During each
iteration, CoSaMP performs five major steps, including
identification, support merger, estimation, pruning and
sample update. These steps are repeated until the halting
criterion is triggered.

The following lists the steps of the CoSaMP algorithm.

Algorithm 3. CoSaMP recovery algorithm.

Input:
Sampling matrix �, sample vector u and sparsity level
K.

Procedure:

Initialize:
a0 � 0; v � u; n � 0; v is current samples and n is an
iteration counter.

Solder joint imagery compressing and recovery

Huihuang Zhao, Yaonan Wang, Zhijun Qiao and Bin Fu

Soldering & Surface Mount Technology

Volume 26 · Number 3 · 2014 · 129–138

131

D
ow

nl
oa

de
d 

by
 D

oc
to

r 
hu

ih
ua

ng
 z

ha
o 

A
t 1

8:
40

 1
0 

M
ay

 2
01

6 
(P

T
)



Repeat:
1 n � n � 1, form signal proxy, y � ��v, �� is the

Hermitian transpose of �;
2 Identify large components:

� � supp(yn);

3 Merge support:

T � � � supp(an�1);

4 Signal estimation by least squares: b�T � �T
†u,

b�Tc � 0, �† is the pseudo-inverse of � such that
�†�������1��; TC indicates the compliment of set
T; and b�T indicates the vector b is restricted by
only the elements given in T.

5 Prune to obtain next approximation: an � bk;
6 Update current samples: v � u � �an; until halting

criterion is true.

Output:
A K-sparse approximation a of the target signal.

3.4 Subspace pursuit
The main difference between subspace pursuit (SP) and
CoSaMP is the manner of adding new candidates. More
precisely, SP only adds K new candidates in each iteration,
while CoSaMP adds 2K, which makes the SP computationally
more efficient but the underlying analysis more complex. The
following lists the steps of the SP algorithm.

Algorithm 4: CS recovery using SP

Input:
The CS observation y, a measurement matrix
� � Rm � n, a signal sparse transform matrix � � Rn � n;
sample vector u, sparsity level K.

Procedure:

Initialization:
T0 � {K indices corresponding to the largest
magnitude entries in the vector ��y}; yr

0 � resid
�y, �T̃0�.

Iteration: At the lth iteration, go through the following
steps:

1 T̃ l � T̃ l�1 � {K indices corresponding to the largest
magnitude entries in the vector ��yr

l�1};
2 Set xp � �T̃l

† y, where �T̃l
† � ��T̃l

� �T̃l��1�T̃l
� ;m,

3 Tl � {K indices corresponding to the largest
elements of xp};

4 yr
l � resid�y, �Tc�;

5 If ��yr
l��2 � ��yr

l�1��2, let Tl � T l�1 and quit the
iteration.

Output:
The estimated signal x̂, satisfying x̂�1, 2 . . ., N� � T l � 0 and
x̂T l � �T̃ l

† y.

4. Reconstruction algorithms for block
compressed sensing

4.1 Block compressed sensing
An N1�N2 image is divided into small blocks with a size of
n1�n2. Let fi represent the vectorized signal of the i-th block

through raster scanning, i � 1, 2 [. . .] n and n � N1N2/n1n2.
An m-dimensional sampled vector yb can be obtained through
the following linear transformation (Eldar et al., 2010):

yb � �B fi (7)

where fi is an n1n2-dimensional vector, �B is an m � n1n2

measurement matrix, m �� n1n2. Note that block CS is
memory efficient, as we just need to store an m � n1n2

Gaussian ensemble �B, rather than a full M � N1N2 (i.e.
nm � n1n2) one. Small requires less memory in storage and
faster implementation, while large offers better reconstruction
performance.

The main advantages of block-based CS can be summarized
as follows:
● The measurement operator can easily be stored and

implemented through a random under-sampled filter bank.
● Block-based measurement is more advantageous for

real-time applications, as the encoder does not need to send
the sampled data until the whole image is measured.

● Because each block is processed independently the initial
solution can be obtained and the reconstruction process is
substantially sped up.

4.2 Reconstruction algorithm
It can be seen from the introduction of the CoSaMP algorithm
above that the algorithm is initialized with a trivial signal
approximation, which means that the initial residual equals
the unknown target signal. During each iteration, CoSaMP
performs five major steps:
1 Identification. The algorithm forms a proxy of the residual

from the current samples and locates the largest
components of the proxy.

2 Support merger. The set of newly identified components is
united with the set of components that appear in the
current approximation.

3 Estimation. The algorithm solves a least squares problem
to approximate the target signal on the merged set of
components.

4 Pruning. The algorithm produces a new approximation by
retaining only the largest entries in this least squares signal
approximation.

5 Sample update. Finally, the samples are updated so that
they reflect the residual, the part of the signal that has not
been approximated.

These steps are repeated until the halting criterion is triggered.
In his study, an improved CoSaMP algorithm was used for

signal recovery based on block compressing sensing. The
detailed algorithm is shown as follows.

Algorithm 5. Block CoSaMP algorithm

Input:
1 An image can be divided into some small blocks of

a size ni � mi, sample rate w (w � �0, 1�);
2 The sparsity level k of the block images;
3 An M � N measurement matrix �, N �

n�m, M � N
�
w.

Output:
An estimate x̂ of an image x
For each block ni � mi image procedure:
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Initialization:
i Transform each ni � mi image block into an

�ni
�mi��1 data vector y;

ii x̂�1 � 0 (x̂J is the estimate at the Jth iteration); and
iii r � y (the current residual).

Procedure:
Loop until convergence

i Compute the current error:

ei � �i�r i

ii Compute the best 2k support set of the error
(index set):

�i � e2k
i

iii Merge the strongest support sets:

T i � �i � supp(x̂J�1
i )

iv Perform a least squares signal estimation
(Johnson et al., 2012):

bi�Ti � �i
|Ti

† y, bi�TiC � 0.

v Prune
x̂i

J

and compute ri for next round:

x̂i
J � bi

k; r i � yi � �ix̂i
J.

vi Each
x̂i

J

consists of x̂.

End

5. Experiment
To evaluate the quality of the reconstructed results, the mean
square error and peak signal noise ratio (PSNR) can be
utilized. They are defined as follows (Huynh-Thu and
Ghanbari, 2008);

1
M � N 	

i�1

M

	
j�1

N

(f̂(i, j) � f(i, j ))2 (8)

PSNR � 10log 10� 2552

MSE� (9)

where M and N are the image dimensions, f̂ is the de-noised
image and f is the original noiseless image. In this study, the
PSNR was used to compare the experimental results.

An original gull-wing lead solder joint image was used as a
test image in Figure 1(a) (size 256 � 256). The sparse
transform DCT matrix and sparse image are shown in Figure
1(b,c).

The reconstruction result based on conventional CS with
matrix R’s rows M � 180 can be seen in Figure 2(b-e), and the
reconstruction result based on block CS with sample rate 0.7

(M/N � 0.7) and block sizes 4 � 4, 8 � 8 and 16 � 16 can be
seen in Figure 2(f-h).

The reconstruction result based on conventional CS with
matrix R’s rows M � 230 can be seen in Figure 3(b-e), and the

Figure 1 Original image and sparse image
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Figure 2 Reconstruction results
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Figure 3 Reconstruction results
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reconstruction result based on block CS with sample rate 0.9
(M/N � 0.9) and block size 4 � 4, 8 � 8 and 16 � 16 can be
seen in Figure 3(f-h).

It can seen by comparing Figure 3(f-h) that the method
reported here can obtain better results in PSNR than the results
obtained from methods based on conventional CS. The results
for varying sample rates are summarized in Table I.

From Table I, it can be seen that the PSNR of the
reconstructed results is improved. The new method reported in
this paper can obtain better results than those based on
conventional CS. The quantization comparison of reconstructed
results with different block size can be seen in Figure 4.

As can be seen from Figure 4, the method when block size
is 8 � 8 (N � 64) can obtain better results than other
traditional methods. During the improved methods, when the
block size is 16 � 16 (N � 256), the best results were
obtained.

6. Conclusion
This paper has focused on the development of compressing
and reconstruction methods for solder joint imagery. There
are many algorithms in compressive sampling that have been
used to approximate a signal, given a vector of samples.
Among them, CoSaMP achieves good performance on PNSR.
Solder joint image were divided into some blocks, and an
image reconstruction method was proposed based on block
compressing sensing with the CoSaMP algorithm. The

performance of the proposed approach has been shown and
compared with different block sizes. The main advantages of
block CoSaMP are as follows:
● Measurement operator can easily be stored and

implemented through a random under-sampled filter
bank.

● Block-based measurement is more advantageous for
real-time applications.

● The proposed algorithm can be obtained and can achieve
the best result on PNSR than other methods.

● The block CoSaMP algorithm when block size is 16 � 16
can obtain better results than when the block size is 8 � 8
and 4 � 4.

In future studies, the relationship between the size of block
and recovery performance will be researched, and the speed of
the proposed algorithm will also be considered.
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