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Automated Visual Inspection of Glass Bottle
Bottom With Saliency Detection

and Template Matching
Xianen Zhou , Yaonan Wang, Changyan Xiao , Qing Zhu , Xiao Lu, Hui Zhang, Ji Ge, and Huihuang Zhao

Abstract— Glass bottles are widely used as containers in the
food and beverage industry, especially for beer and carbonated
beverages. As the key part of a glass bottle, the bottle bottom
and its quality are closely related to product safety. Therefore,
the bottle bottom must be inspected before the bottle is used
for packaging. In this paper, an apparatus based on machine
vision is designed for real-time bottle bottom inspection, and
a framework for the defect detection mainly using saliency
detection and template matching is presented. Following a brief
description of the apparatus, our emphasis is on the image
analysis. First, we locate the bottom by combining Hough circle
detection with the size prior, and we divide the region of interest
into three measurement regions: central panel region, annular
panel region, and annular texture region. Then, a saliency
detection method is proposed for finding defective areas inside the
central panel region. A multiscale filtering method is adopted to
search for defects in the annular panel region. For the annular
texture region, we combine template matching with multiscale
filtering to detect defects. Finally, the defect detection results
of the three measurement regions are fused to distinguish the
quality of the tested bottle bottom. The proposed defect detection
framework is evaluated on bottle bottom images acquired by
our designed apparatus. The experimental results demonstrate
that the proposed methods achieve the best performance in
comparison with many conventional methods.

Index Terms— Defect detection, machine vision, multiscale
filtering, saliency detection, template matching.

I. INTRODUCTION

GLASS bottles are widely used as containers in the food
and beverage industry, especially for beer and carbon-
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ated beverages [1], because glass bottles are easy to mold,
easy to recycle, relatively inexpensive, and highly resistant to
internal pressure [2]. However, glass bottles can also be easily
damaged in the transport process and in various manufacturing
processes. In addition, smudges and foreign material may exist
on the bottle surface, especially on reused bottles [3]. The
bottle bottom is a key part of a glass bottle. If a bottle that
possesses bottom defects is filled, potential hazards may occur
during product storage and transportation. Hence, the quality
of the bottle bottom must be strictly checked before filling the
bottle.

The conventional bottle bottom inspection methods rely on
manual inspection, and they suffer from inherent inconsis-
tency and unreliability because the entire inspection process
is subjective and very tedious [4], [5]. As a promising and
nondestructive measurement technique, machine vision-based
defect detection has been widely applied in medicine [6], [7],
food [8], beverage [4], and many other fields [9]–[17]. This
approach also provides a flexible solution to bottle bottom
quality control. To date, even though many patents related to
bottle bottom inspection devices have been filed [3], [18], [19]
and there exist several commercial vision systems available for
bottle inspections [20], [21]. However, there are still many
problems to be solved, such as the inaccurate localization
of bottle bottom, the difficulty in defect detection of texture
region, and the interference of gray-value variety across the
central panel. Some directly related papers are also discussed.
Shafait et al. [22] presented a simple method. They first locate
the center of the bottle bottom with a generalized Hough
transform. Then, they check each gray value in the region of
interest (ROI) to distinguish defective regions. If the intensity
of an individual pixel does not lie within the tolerance limit,
then the pixel is designated as an outlier. Otherwise, the pixel
is labeled as normal. This is a simple and fast method because
it depends on only two thresholds. However, the result is
susceptible to the impact of many factors, such as light inten-
sity inhomogeneity and bottom thickness variety. To enhance
the robustness, Duan et al. [4] introduced a defect detection
approach based on a back propagation neural network for the
bottle bottom and bottle body. The 6-D features, including the
gradient and many binary values obtained by thresholds, are
first calculated. Then, two artificial neural networks are used
for low-level inspection and high-level judgment. The structure
of the network is complicated. Therefore, training the network
is time-consuming. To accelerate the process, Ma et al. [23]
and Huang et al. [24] employed least squares circle detection
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and redefined randomized circle detection algorithms to locate
the ROI of the bottle bottom, and they applied the blob
algorithm and discrete Fourier transform (DFT) to detect
defects in the panel and texture regions, respectively [25].
However, there is no further discussion regarding how to
obtain blobs. Consider that global thresholding segmentation
(GTS) and adaptive thresholding segmentation (ATS) are two
simple and popular methods to obtain blobs, they will be
discussed in the comparison experiments in this paper. All
these traditional methods have some common problems. For
example, when glass chips and transparent foreign particles
are present on the bottle bottom, the thicknesses of the bottle
bottoms are different, or foreign materials and contaminants
exist in the texture region. Precisely detecting defects are
difficult.

To find a suitable solution for bottle bottom inspection,
many similar works in surface defect detection problems
are further analyzed. Liu et al. [1] combined a support vec-
tor machine with fuzzy theory to inspect defects of the
bottle body. In [26], a simple method of thresholding and
edge extracting was used to detect defects on mouths of
vials. Zhou et al. [27] used a fast sparse-representation-based
detection algorithm to detect surface defects on bottle caps.
A wavelet-based method was used for defect detection
in [28]–[30]. Many anisotropic diffusion model (AD)-based
methods [31]–[35] are also widely used for surface defect
detection, especially for low-contrast images. Superpixel seg-
mentation and a bi-Gaussian filter were fused to extract
defects on the inner surface of can ends [4]. Saliency detec-
tion methods are also a good choice for object detection
and surface defect detection [36]–[38]. Moreover, the active
contour model [39], [40], Gabor filtering [41], [42], and the
expectation-maximization technique [43] could also be used
for surface defect detection. Although there are many surface
defect detection algorithms, they were mostly developed to
solve specific problems. Hence, only few of these algorithms
can be directly applied to bottle bottom inspection.

In this paper, we present an automated visual apparatus,
and we propose a framework using the saliency detection and
template matching for bottle bottom inspection with real-time
speed. The emphasis is placed on image processing algorithms
for defect detection across different bottle bottom regions. The
main contribution of this paper is fourfold.

1) An automated visual detection system is designed to
detect defects for bottle bottoms.

2) A defect detection framework with saliency detection
and template matching for glass bottle bottoms is pro-
posed. The proposed framework consists of three parts,
which are applied to detect defects in the central panel,
annular panel, and annular texture region of glass bottle
bottoms.

3) We propose saliency detection algorithms that include a
redefined geodesic saliency detection and a 1-D saliency
detection based on multiscale mean filtering used for
defect detection in panel regions of bottle bottoms.
These methods can improve the robustness of defect
detection by raising the contrast between the background
area and all suspected defects.

Fig. 1. System structure and electrical control system of the developed
apparatus. (a) System structure. (b) Electrical control system.

4) We propose an annular texture region defect detection
method composed of template matching and multiscale
mean filtering, which can improve the robustness to
gray-value variety.

This paper is organized as follows. The system architecture,
imaging system, and defects and challenges are introduced in
Section II. Section III illustrates the proposed defect detection
framework for glass bottle bottoms. The experimental results
are presented in Section IV. Finally, Section V presents the
conclusion.

II. SYSTEM DESIGN

In this section, the system architecture of the glass bottle
bottom inspection apparatus is first introduced, and particular
considerations regarding the illumination scheme are pre-
sented. Then, the image properties and the challenges for
defect detection are investigated.

A. System Architecture

The system structure and electrical control system are illus-
trated in Fig. 1. The apparatus mainly consists of three com-
ponents: 1) an electromechanical device; 2) an imaging sys-
tem; and 3) a processing module. Among these components,
the electromechanical device is composed of motors (1.1),
converters (1.2), an encoder (1.3), and so on. This component
is used to achieve automatic motion control and sorting of
bottles. The imaging system, which consists of a camera
(2.1), light source (2.2), and photosensor (2.3), is designed
to acquire high-quality images for the fast-moving test items.
The processing module is composed of a computer (3.1)
and programmable logic controller (PLC) (3.2). This module
is adopted to process the obtained image and control the
operation of the machine. The glass bottle is grabbed by
both conveyor belts (1.6), as shown in Fig. 1(a). When it is
transmitted to the photoelectric sensor (2.3), a trigger signal
is generated, and this signal is received by the PLC (3.2).
Then, the PLC generates two signals to turn on the planar
light source (2.2) immediately and to trigger the camera (2.1),
which captures a bottom image. Finally, the computer (3.1)
implements the proposed defect detection framework and
outputs the results. If any defect of a bottle bottom is detected,
the bottle is considered as defective, which is not approved
by the visual inspection system. In other words, the defective
bottle will be removed from the production line by an air
cylinder (1.5).
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Fig. 2. Demonstrate the structure of a glass bottle and our designed imaging
system. (a) Bottle. (b) Bottom. (c) Real imaging system. (d) Real bottom
image.

B. Imaging System

The glass bottle is usually composed of three parts including
bottom, body, and mouth, as shown in Fig. 2(a). The bottle
bottom consists of two parts: a texture region and a panel
region, as shown in Fig. 2(b). We focus on defect detection
in the central panel region and annular region of the bottle
bottom. To capture an image that can display these abnormal
regions clearly, we designed the imaging system composed of
a camera and a planar light source, as shown in Fig. 2(c).
The camera, which is installed in a closed box, in which
the inner surface is painted black in order to avoid ambient
light interference, is situated above the bottle and looks down
at the bottle bottom through the neck opening of the bottle.
The bottom is, in turn, illuminated from below by a planar
light source, which is sufficiently large to illuminate the entire
bottom. The limiting camera resolution, ILCR, is calculated
by ILCR = (SFOV/SMD) ∗ NPD, where SFOV and SMD denote
the sizes of the field of view (FOV) and minimal defect,
respectively. The minimal defect requires at least NPD pixels
to represent. In this paper, SFOV ≈ 120 mm, SMD = 1
mm, NPD = 4. Hence, the minimum resolution meeting our
requirement is 480 × 480. A camera with a resolution of
648 × 483 is sufficient to satisfy the inspection requirement.
The real image from the in-field inspection is acquired in a
grayscale format, as shown in Fig. 2(d).

C. Defects and Challenges

As shown in Fig. 2(d), in an ideal situation, images of the
normal bottle bottoms generally have relatively uniform gray
levels in each region. However, due to different thicknesses of
bottle bottoms, the image of a normal bottle bottom also has
irregular gray levels. In addition, the bottle bottom inspection
is considered to be particularly difficult due to many other

Fig. 3. Typical defects of bottle bottoms with (a) smudginess,
(b) glass detritus, (c) transparent film, (d) paperclip, (e) damaged bottom, and
(f) bubble. Here, the red ellipse marked regions are magnified and displayed
at the lower right corner of each subfigure, and the digits represent the mean
gray values of the white rectangular regions.

complex factors. Here, beer bottles are used for demonstration.
After the beer inside the bottle has been consumed, there
are cases where cigarette butts, transparent films, bottle caps,
paperclips, and so forth are pressed into the bottle; addition-
ally, foreign particles including glass chips due to bottle mouth
cracks enter the bottle [3]. Such foreign particles, including
glass detritus, transparent film, paperclips, and many varieties
of materials, have different types of optical characteristics to
such an extent that it is extremely difficult to detect all of
these objects simultaneously. Moreover, the bottle bottom is
susceptible to damage during transportation and processing.

To further understand the complexity of bottle bottom
inspection, we divide bottle bottom flaws into four different
types according to the reflected features in the obtained
images.

1) Opaque Foreign Objects: The gray level of opaque for-
eign objects in the bottle bottom image is clearly lower
than that of the normal region. In addition, the edges of
the opaque foreign objects are very clear and sharp. Take
the large glass detritus and the paperclip as examples,
as shown in Fig. 3(b) and (d).

2) Transparent Foreign Objects: The region corresponding
to transparent foreign objects in the bottle bottom image
is similar to the normal region. The edges are not sharp.
Take the transparent film as an example, as shown
in Fig. 3(c).

3) Contaminants: As shown in Fig. 3(a), the gray level of
the contaminant region is typically lower than that of the
normal region. In addition, the differences in boundary
region are not very large.

4) Self-Defects: Their marginal region is generally smooth.
The gray feature of the obtained image is in complete
contrast to that of the contaminant. Take the broken glass
and bubble as examples, as shown in Fig. 3(e) and (f).

From the previous analysis, the main challenges in detecting
bottle bottom defects can be summarized as follows.

1) The gray values of the panel region change in a great
range for different bottle bottom images, even though
these images are obtained by the same system with the
same parameter settings, and the corresponding tested
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bottles are also the same type of glass bottle. The prob-
lem may also be caused by the thicknesses of different
bottoms being different. For example, the average gray
value of the white rectangular region in Fig. 3(a) is 188,
while that of the region in Fig. 3(b) is 132. Specifi-
cally, even for the same bottom image, the grayscale
distribution may vary remarkably in different locations,
as shown in Fig. 3(d).

2) The contrast between the defective region and the nor-
mal region is very low; for instance, when a trans-
parent film exists on the bottom, the corresponding
captured image is shown in Fig. 3(c). The grayscale
values of defects are very different. When the bottom
has been broken, the grayscale values of the broken
region are larger than those of the background, as shown
in Fig. 3(e). When smudges, paperclips, transparent film,
and other foreign materials exist on the bottom, the gray
values of the defective regions are smaller than those of
the normal region, as shown in Fig. 3(a)–(d).

3) The category of defects, the scale of defects, and the
position of defects are diverse.

4) Defects, particularly small and low-contrast defects,
existing in the texture region are difficult to detect
because the texture size, shape, and grayscale level may
also change sharply.

III. BOTTLE BOTTOM INSPECTION METHOD

To overcome the problems described earlier, we proposed
an image analysis pipeline for glass bottle bottom inspection
according to the features of defects. As shown in Fig. 4,
the bottom is first located through a Hough transform circle
detection. Then, the bottom is divided into the central panel
region and annular region, the latter is further segmented
into two subregions: the annular panel region and the annular
texture region. In the following, three different algorithms are
applied to detect defects in different regions, where defect
detection methods based on a geodesic distance transform and
multiscale filtering are proposed for inspecting defects in the
center panel region and the annular panel region, respectively.
A defect detection method based on template matching is
proposed for detecting defects in the annular texture region.
Finally, the inspection results of the three regions are fused to
distinguish the quality of the entire bottle bottom, as well as to
display a complete result of defect detection. The consumed
time of our entire framework is approximately 133 ms when
the framework is executed on a computer configured with
an Intel(R) Core(TM) i5-4210U (1.7–2.4 GHz) and 6 GB
of memory. The consumed time of each process and the
corresponding proportion of total time consumption are also
given in Fig. 4. Defect detection with our framework on
nine tested bottle bottom is given in Fig. 5. It is clear that
the majority of typical defects can be correctly detected.
By changing the parameter settings, the proposed framework is
applicable to a diversity of bottle bottom samples with various
colors and sizes. However, the shape of the bottom of the
tested bottle must be cylindrical since the ROI of the bottle
bottom image is obtained by the Hough circle detection. The
schematic of a tested bottle model is given in Fig. 2(a).

Fig. 4. Proposed defect detection framework.

Fig. 5. Defect detection with the proposed framework. (a)–(i) Defect
detection results for typical glass bottle bottoms. Here, the detection results
are marked with rectangles in the lower right corner of (a)–(f) corresponding
to the typical defects in Fig. 3. The red “Bad” and green “Good” in the upper
left corner of each figure, respectively, indicate the unqualified and qualified
bottle bottoms.

A. Measurement Region Localization

Due to mechanical vibration from conveyor motion and
random errors of the software system, the ROI of the bottle
does not present at a fixed position in the obtained images.
Therefore, it is necessary to locate the object beforehand.

In this paper, we combine circle detection with size priors to
obtain the ROI because the bottle bottom is a standard circular
object and has a fixed size for a certain type of bottle. We use
the 21HT algorithm [44], which consists of two steps, radius
detection and center detection, to obtain the ROI of the bottom.
21HT, which requires less memory and has higher efficacy
than the traditional Hough circle detection method [45], is one
of the most popular circle detection methods and has been
implemented in many popular image processing tools, such as
OpenCV and MATLAB. After localization, the input image
is divided into two measurement regions, namely, the central
panel region and annular region, as shown in Fig. 6(b) and (c),
the latter is defined by its inner radius Ra_min and outer
radius Ra_max. The radius of the central panel region is Rc.
Ra_min, Ra_max, and Rc are set according to prior knowledge
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Fig. 6. Measurement region localization. (a) Glass bottle bottom location.
The red circle is the region obtained by the proposed localization method. The
region in the green circle is the central panel region. The region between the
large blue circle and the small blue circle is the annular region. (b) Enlarged
figure of the central panel region. (c) Enlarged figure of the original annular
region. (d) Annular region unwrapping. (e) Canny edges. (f) Edges that belong
to the texture region. (g) Central line of the annular texture region obtained
by polynomial fitting. (h) Annular panel and texture regions obtained by the
size prior of the regular texture. (i) Annular panel region. (j) Annular texture
region.

of the bottle bottom. To ensure reliability for defect detection,
we reserve a common panel region for the central panel region
and annular region, as shown in Fig. 6(a), which is between
the green circle and the small blue circle. The annular region is
a ring-shaped image, which is inconvenient for the follow-up
image processing. Thus, we transform it into a rectangular
image with the radial development approach [8] in polar
coordinates with pole O and polar axis L denoted by the
white dotted line in Fig. 6(a), where the polar angle θ is
measured clockwise from the axis L. Followed, the annular
region unwrapping image, as shown in Fig. 6(d), named
as the annular region, is further divided into two subparts,
namely, annular panel region and annular texture region, and
the corresponding flowchart is presented in Fig. 6(d)–(j). It is
mainly composed of three steps: edge extraction, denoising,
and polynomial fitting. The rectangular image obtained by
the radial development approach is first fed into the Canny
algorithm to abstract edges since each texture generally has
a sharp boundary. Then, the interference connected edges are
searched and removed according to two features: the length
of the connected edge denoted by FLCE, and the ratio of the
height to width denoted by FRHW. If FLCE and FRHW of an
edge are too large or too small, the edge is considered as an
interference edge and removed. Finally, the remaining edges
are taken as the input data, and we use a polynomial of degree
three to fit the input data, which is similar to [46]. p1, p2, p3,
and p4 are four coefficients of the polynomial x = f (y),
which is given as

f (y) = p1 + p2y + p3y2 + p4y3. (1)

Depending on the x-coordinates and the y-coordinate of
the input data, four coefficients can be obtained with the least
squares method. In other words, the central line of all regular
texture regions, i.e., f (y), is obtained, as shown by the white
line in Fig. 6(g). Finally, we combine the height prior of the
texture region with the central line to obtain the annular texture
region and annular panel region, as shown in Fig. 6(i) and (j).
We realign the annular texture region by the polynomial fitting
without a requirement of f (0◦) = f (360◦). Because the main
purpose of the fitting is to divide the annular region into two
subregions: annular panel region and annular texture region.
Moreover, the fitted result usually has little effect on the final
defect detection result since the majority of interference edges
have been removed.

B. Defect Detection in Annular Texture Region

Defects in the annular region are diverse. Moreover,
the complex structures of the bottle bottom make the gray-level
distribution vary remarkably with changing location. These
factors dramatically increase the difficulty of defect detection.
Fortunately, in the same bottom image, the majority of texture
regions are usually similar to each other in shape and size.
Hence, we propose a template-matching-based defect detection
algorithm named TM for short, as shown in Fig. 7, which
includes three steps: regular texture localization, template
extraction, and template matching and defect recognition.

1) Regular Texture Localization: Regular texture localiza-
tion consists of three subparts: gray projection, mean filtering,
and ridge detection, as shown in Fig. 7(a)–(c). First, the pro-
jection profile of the ROI strip is obtained by accumulat-
ing the gray levels in the x-coordinate direction. However,
the obtained 1-D signal is very noisy, as shown in Fig. 7(b).
To reduce noise, mean filtering is used for smoothing the
projection profile. Ridges generally appear on the central line
between the two adjacent texture regions. On this basis, we can
locate each regular texture region by detecting ridges in the
y-coordinate direction. Finally, we search all local peaks of
the obtained 1-D signal, and beginning from the first peak,
we remove those peaks separated by less than a distance
threshold, which is set manually according to the width prior
of the texture region. The remaining ridges are the final ridge
detection result, as shown in 7(c).

2) Template Extraction: For different bottle bottoms,
although these bottles belong to the same type, the differences
in regular texture are particularly great because the used time
is inconsistent for recycled bottles. Thus, we must extract the
corresponding template of regular texture for each tested bottle
bottom.

The flowchart of template extraction is presented
in Fig. 7(d)–(g). First, we transform the curvilinear strip into
a regular rectangular image to facilitate the follow-up process
of image processing, as shown in Fig. 7(d). Then, the width
of each texture region and the appearance frequency of each
width are computed. Finally, we obtain the regular texture
regions with the maximum frequency and take the average
gray levels of all obtained texture regions as the template,
as shown in 7(g), because the defective regions cover only the
minority of the whole annular region, and their appearance
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Fig. 7. Process of detecting defects in the annular texture region. (a) Annular
texture region. (b) Projection profile, the corresponding mean filtering and
the local maximum of the mean filtering signal. The location of the local
maximum of the mean filtering projection profile is marked by the blue “∇ .”
(c) y-coordinate localization of each regular texture. The green line denotes the
location of the local maximum of the mean filtering projection profile, which
is generally the y-coordinate central line of both adjacent regular textures.
(d) Rectangular image of the annular texture region. (e) Texture regions used
for generating the template of the texture region. The objective regular texture
regions are marked by the white numbers. (f) Enlarged figures of the objective
textures for generating the template. (g) Average template of the texture region.
(h) Rectangular image of annular texture region and template matching.
(i) Correlation coefficient and the multiscale filtering result. (j) Defect
detection result in the annular texture region.

frequency is typically very low. Consider that the template is
the average appearance of many defect-free texture regions,
it is named average template, which always takes the same
size as the matched subimage in the rectangular image during
matching or correlation measurement.

3) Template Matching and Defect Recognition: The over-
all process of template matching and defect recognition is

illustrated in Fig. 7(h)–(j). First, the correlation coefficient
denoted by R(x, y), as shown by the red curve in Fig. 7(i),
between the average template and the rectangular image is cal-
culated from the equation (2): where TW and TH , respectively,
represent the width and the height of the average template.
IW and IH are the width and the height of the rectangular
image, IH = TH . IAT (x, y) and T (i, j) denote a pixel in the
rectangular and template images, respectively. The coordinates
of the former are x and y, and those of the latter are i and
j . T and I AT (x, y) are the average values of the template
and subimage of the rectangular image, where the coordinates
of the center of the latter are x and y. Both of them are
given as

T = 1

TH TW

TH∑

i=1

TW∑

j=1

T (i, j) (3)

I AT (x, y) = 1

TH TW

TH∑

i=1

TW∑

j=1

IAT (x + i, y + j) (4)

where x and y in (2), as shown at the bottom of the next
page and (4) are a constant and a variable, respectively,
x = (IH + 1)/2, and y ∈ [(TW − 1)/2, IW − TW + 1]. The
process of template matching is similar to a kernel filter. The
difference is that the template slides only along the central
line of the rectangular image. As shown in Fig. 7(h) and (i),
a defect generally appears as a valley on the corresponding
correlation coefficient signal. However, the local variation
caused by defects on the correlation coefficient curve may
not be obvious and may contain noise. Hence, R(x, y) is fed
into an approach, which combines a multiscale mean filtering
algorithm with the traditional valley detection method [47]
to further highlight defective areas. For the multiscale mean
filtering algorithm, the 1-D correlation coefficient signal is
first filtered by mean filtering with different scales of filtering
masks. Then, the maximum response under all scales is
taken as the final filtering output. After this process, defects
generally appear as the obvious valleys on the filtered signal,
as shown by the green curve in Fig. 7(i). Finally, a threshold
Tcc, as shown by the blue line in Fig. 7(i), is adopted to
discriminate desired defects from noisy interference. The parts
whose values are lower than Tcc are considered as the real
defective segments, as shown in Fig. 7(j).

C. Defect Detection in Annular Panel Region

In Fig. 8, the full flowchart of defect detection for the
annular panel region is presented. The proposed method is
called MMF for short because it based on multiscale mean
filtering.

1) Projection and Multiscale Mean Filtering: The projec-
tion profile of the annular panel region, S(y), is calculated
by

S(y) = 1

l(y)

l(y)∑

x=1

IAP (x, y) (5)
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Fig. 8. Flowchart of defect detection for the annular panel region.
(a) Annular panel region IAP (x, y), where the white rectangular regions in
the left and right of the image are normal and defective regions, respectively.
(b) Projection profile S(y). (c) Mean filtering masks with different scales
W (y, bi ). (d) Mean filtering results with different scale masks F(y, bi ).
(e) D(y, bi ), the differences between S(y) and F(y, bi ). (f) R(y), the maxima
of the mean filtering results with multiscale masks. (g) Defect detection result
in the annular panel region.

where IAP(x, y) denotes the annular panel region subimage
and l(y) is computed by

l(y) = f (y) − TH − 1

2
− 1 (6)

where TH denotes the height of the average template and it is
an odd number. The input annular panel region is illustrated
in Fig. 8(a), the corresponding 1-D signal projection profile
S(y), as shown in Fig. 8(b), has considerable noise, and
the grayscale values of defects and background often change
remarkably in different locations. In addition, defects always
clearly appear in the local region. The sizes of defects are
generally very small compared with that of the background.
To suppress noise, S(y) is fed into the mean filtering as

F(y, b) = S(y) ∗ W (y, b) =
b∑

t=1

S(y + t)W (t, b) (7)

where “*” denotes the convolution operation, and W (y, b) is
a general mean filter mask with one row and b columns, that

is,

W (y, b) = 1

b
[1, 1, . . . , 1] (8)

with the mask width b as the scale parameter, i.e., the scales
and mask widths are one-to-one correspondence.

2) Differences Between Projection Profile and Filtering
Results: We make defects more noticeable by calculating

D(y, b) = |F(y, b) − S(y)|. (9)

3) Obtain Maxima and Defect Recognition: To make
defects with different sizes more noticeable, we set b with
different values and calculate the maximum response under
all these scales, i.e., b = {b1, b2, . . . , bK }, K denotes the
number of different scales of the filter mask, whose value is
empirically configured. The values of b are set evenly between
SDmin and SDmax, which are the minimal and maximal scales of
all possible defects, respectively. They satisfy the requirement
that bk+1 − bk = (SDmax − SDmin)/(K − 1), b1 = SDmin, and
bK = SDmax , where SDmin and SDmax are set by the prior
knowledge of defects. We compute the final result by

R(y) = arg max
SDmin≤bi≤SDmax

{D(y, bi )}. (10)

For example, when we set K = 4, SDmin = 3, and SDmax = 21.
The widths of the mask are b1 = 3, b2 = 9, b3 = 15, and
b4 = 21, the masks with different scales are shown in Fig. 8(c).

For the defective and normal regions, the mean filtering
results obtained by different scale filters are quite different,
as shown in Fig. 8(d). Similarly, R(y) generally has a large
value at the defective region. Conversely, the values of R(y)
are especially small in the normal region, as revealed in
Fig. 8(e). Hence, the maxima of filtering results with different
scales are selected for distinguishing the normal and defective
regions, as shown in Fig. 8(f). Finally, the parts with R(y) >
Tmf are regarded as the desired defective regions, as shown
in Fig. 8(g).

D. Defect Detection in Central Panel Region

Many foreign objects may exist in the central panel region.
The sizes and shapes of foreign objects are distinct from
each other, and the position is unknown. Fortunately, there
is a common property in that they often cover a small closed
area with a local homogeneous gray-level distinct from most
of the background region. Meanwhile, defects are typically
considered as rare phenomena compared with normal regions.
Hence, defective regions will potentially attract the visual
attention of the surveyor [48]. Based on this, we proposed
two new saliency detection methods for detecting defects in
the central panel region. One method, named region growing
geodesic saliency (RGGS), is an improved geodesic saliency
detection algorithm that combines a redefined region growing
algorithm with geodesic distance transform. The other, called

R(x, y) = (IAT (i + x, j + y) − I AT (x, y))(T (i, j) − T )√∑TH
i=1

∑TW
j=1 (IAT (i + x, j + y) − I AT (x, y))2

∑TH
i=1

∑TW
j=1 (T (i, j) − T )2

(2)
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Fig. 9. Pipelines of the original geodesic saliency detection and our improved
method. (a) Original geodesic saliency detection algorithm. (b) Undirected
weighted graph structure of the original geodesic saliency detection. (c) Our
improved method.

region growing Euclidean saliency (RGES), replaces the geo-
desic distance with Euclidean distance to further accelerate the
former.

In the original geodesic saliency detection algorithm [49],
the flowchart is mainly composed of two steps: obtaining
patches by simple linear iterative clustering (SLIC) [50] or rec-
tangular image patches and computing the saliency value by
the geodesic distance transform, as shown in Fig. 9(a), which
is usually used for salient object segmentation in color images.
The basic idea of the geodesic distance transform with rectan-
gular patches is given as follows. For an image, an undirected
weighted graph is constructed, G = {V , E}. The vertices
contain all image patches {Pi } and a virtual background node
B, V = {Pi } ∪ {B}. There are two types of edges: internal
edges that connect all adjacent internal patches and boundary
edges that connect image boundary patches to the background
node. E = {(Pi , Pj )|Pi is adjacent to Pj }∪{(Pi , B)|Pi is on
the image boundary}, as shown in Fig. 9(b), where the green
bottle in the center of the image is the salient object that needs
to be extracted. Patches with red and white boundaries are
boundary and internal patches, respectively. The white sphere
denotes the virtual background node B , which is connected to
all boundary patches. The geodesic saliency of a patch P is
the accumulated edge weights along the shortest path from P
to background node B on the graph G

S(P) = min
n−1∑

i=1

d
(
P ′

i , P ′
i+1

)
(11)

such that P ′
i ∈ {Pi }, (P ′

i , P ′
i+1) ∈ {E} and consider that P ′

1 =
P , P ′

n is just B , and P ′
i is adjacent to P ′

i+1.
Wei et al. [49] presented two different methods, including

rectangular image patches of 10 × 10 pixels and irregular
superpixels obtained by the SLIC algorithm [50] as image
patches in order to obtain image patches. The former named
GS_GD is faster, and the latter called GS_SP is more accurate.

Fig. 10. Demonstration of the RGGS and GS_SP methods. (a) Superpixels
obtained by the improved method. (b) Saliency map of RGGS. (c) Superpixels
obtained by SLIC method. (d) Saliency map of GS_SP.

GS_SP is quite insensitive to the superpixel algorithm. Thus,
any faster superpixel segmentation method can be used [49].

In this paper, we redefined the original geodesic saliency
method GS_SP in three aspects to make this method more
suitable for defect detection. First, we replaced the SLIC
algorithm with an improved region growing algorithm. Sec-
ond, we redefined that the vertices only contain two types of
patches: many undetermined nodes and a determined back-
ground node. The latter corresponds to the normal region,
which generally has the maximum area in a bottle bottom
image. To intuitively show the difference between the RGGS
and GS_SP, an example is given in Fig. 10, it is obvious that
the proposed RGGS algorithm can obtain more complete back-
ground and clearer edge than the existing GS_SP algorithm.
Finally, to further speed up the improved method, RGGS,
we use the Euclidean distance transformation instead of the
geodesic distance transform. The flowchart of our improved
method is given in Fig. 9(c). The process of the RGGS- and
RGES-based defect detection methods for the central panel
region is shown in Fig. 11, it is mainly composed of three
steps: obtain image patches, obtain background node, and
estimate saliency value and defect recognition.

1) Obtain Image Patches: To obtain image patches, we pro-
pose a new region growing method that combines region
growing with edge detection. First, the input image is fed
into the Canny edge detection algorithm. Because the defec-
tive region is generally a small closed area, we employ the
Douglas–Peucker algorithm [51], [52] to fit the Canny edges
to obtain connected curves or closed polygons. The closed
polygons and connected curves in the original image are
fused. For the fusion image, each curve or polygon is labeled
with a unique label. Then, the remaining unlabeled pixels
are assigned additional category labels by region growing.
We use Euclidean distance to measure the similarity between
the seed and the corresponding four-neighbor pixels. The
seed is sequentially chosen from the unlabeled regions. The
growing process is repeated when the similarity is lower than a
threshold Trg, until all remaining adjacent pixels cannot satisfy
the condition. The last step is repeated until all pixels have
been assigned a label.

To segment the defects as accurately as possible, we imple-
ment the region growing process two times and merge the
patches whose sizes are lower than a certain threshold into
the larger adjacent patch with the most similar gray level. The
entire process of this idea is illustrated in Fig. 11(a)–(e).

2) Obtain Background Node: For the traditional geodesic
saliency detection, background nodes are obtained according
to two priors, which are called boundary and connectivity
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Fig. 11. Process of defect detection in the central panel region. (a) Canny
edges. (b) Polygons. (c) Region growing. (d) Region growing iteration.
(e) Small area fusion. (f) Background node. The patch with red boundaries
is the determined background node whose area is a maximum, and the other
patches with red and white boundaries are undetermined nodes. (g) RGGS.
(h) Defects obtained by RGGS map. (i) RGES. (j) Defects obtained by RGES
map.

priors [49]. The former prior indicates that the image bound-
ary is mostly background. The latter prior indicates that
background regions are generally large and homogeneous.
However, in this paper, we use only the connectivity prior
because defects may appear on the boundary. The image
patch whose size is the largest one is taken as the determined
background node. {Pi } is an image patch, and assume that PB

denotes the determined background node. PB belongs to {Pi }
|PB | = max{|Pi |} (12)

where |PB | and |Pi | denote the areas of PB and Pi , respec-
tively. The central panel region, as shown in Fig. 6(b), is taken
as an example, the patches obtained by the proposed method
are shown in Fig. 11(f).

3) Estimate Saliency Value and Defect Recognition: Con-
sider that the distance between the defective region and the
normal region is relatively large. In contrast to the original
geodesic saliency, the geodesic saliency value is the length
of the shortest path to a virtual background node. In this
paper, we take the length of the shortest path to the determined
background node PB as the geodesic saliency value

S(P) = min

(
n−2∑

i=1

(
P ′

i , P ′
i+1

) + d
(
P ′

n−1, PB
)
)

(13)

such that P ′
i ∈ {Pi }, (P ′

i , P ′
i+1) ∈ {E}. Consider that P ′

1 =
P , and P ′

i is adjacent to P ′
i+1. S(P) and d(P ′

i , P ′
i+1) denote

the saliency value of the node P and the Euclidean distance
between both adjacent nodes P ′

i and P ′
i+1, respectively. Note

that we calculate the shortest paths of all image patches by
Dijkstra’s algorithm [53] for better accuracy.

Fig. 12. Developed visual inspection machine for bottle bottom inspection.
(a) Front view of the real system. (b) Side view of the real system.

To further accelerate the proposed saliency detection,
we compute the Euclidean distance between the undetermined
nodes and the determined background node rather than calcu-
lating the geodesic distance between the undetermined nodes
and the determined background node, i.e., the saliency value
of Pi can be given as

S(Pi ) = d(Pi , PB). (14)

The saliency maps of RGGS and RGES are presented
in Fig. 11(g) and (i), respectively. It is obvious that the saliency
values of the defective regions are typically clearly greater
than those of normal areas. Thus, a simple threshold method
is sufficient to extract defects. In this paper, we define that
those regions whose saliency values and areas are greater than
the thresholds Tsm and Tarea, respectively, are taken as the
real defects. The final results obtained by utilizing the defect
recognition rules on the RGGS and RGES saliency maps are
shown in Fig. 11(h) and (j), respectively.

IV. EXPERIMENTS

In this section, the defect detection algorithms are tested
on bottle bottom images whose resolution and gray levels are
648×483 and 256. First, we construct three glass bottle bottom
databases for our statistical analysis. All images in these
databases are acquired with our apparatus. The photograph of
our developed system is shown in Fig. 12. The first database
including 253 normal images and 977 typical defect images
is applied to validate our framework, where there are 372,
602, and 702 defect-free region subimages of the central
panel, annular panel, and annular texture region, respectively.
The second database including the 29 bottle bottom images is
used for methods comparison and parameter sensitivity analy-
sis. The other database including 11 images, which are selected
from the 29 bottle bottom images, is used to analyze the
performance of the localization method. Then, experiments are
performed on these three data sets for evaluating the parameter
sensitivity and performances of the ROI localization and defect
detection. Experiments are conducted on a computer equipped
with an Intel(R) Core(TM) i5-4210U (1.7–2.4 GHz) and 6 GB
of memory. The program is implemented in Visual C++. The
original images and all experimental results are available.1

1https://pan.baidu.com/s/1AUesUSinEq8N2C0O5zaY8w, download code:
4mq8
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A. Measures

To evaluate the performance of the proposed localization
method, the center deviation EX , EY , and radius mismatch
ER are defined as

EX = |X F − X M | (15)

EY = |YF − YM | (16)

ER = |RF − RM | (17)

where X M , YM , and RM are obtained by manual calibration,
while X F , YF , and RF are the results of the localization
algorithm. | ∗ | denotes the absolute operation.

To evaluate the defect detection performance, we apply
five other measures, including precision (Pr ), recall (Re),
F-Measure (Fβ ), accuracy (Ac), and false detection rate (Fd ),
which are, respectively, given as

Pr = TP

TP + FP
(18)

Re = TP

TP + FN
(19)

Fβ = (1 + β2)Pr Re

β2 Pr + Re
(20)

Ac = TP + TN

TP + TN + FP + FN
(21)

Fd = FP

TP + TN + FP + FN
(22)

where true positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN) correspond to the counts of
defective unqualified, defect-free qualified, defect-free unqual-
ified, and defective qualified, respectively. β is a weight
parameter for Pr and Re. It is set to one in this paper. Ac is
the proportion of correct inspection results. Pr and Re denote
the rates of the correctly detected unqualified products in the
total defective and unqualified bottoms, respectively. Except
the last measure, Fd , the larger the values of these measures
are, the better is the performance of the method.

B. Parameter Sensitivity Analysis

The proposed framework mainly includes five key parame-
ters: Trg, Tsm, Tarea, Tcc, and Tmf. The first three ones belong
to the RGGS- and RGES-based defect detection methods,
whereas Tcc and Tmf belong to the TM- and MMF-based
defect detection methods for the annular texture and annular
panel regions, respectively. Consider that we adopt different
algorithms on three measurement regions, the parameter sensi-
tivity is calculated on the separate measurement region before
fusion. All parameters except Trg are selected by maximizing
their corresponding Fβ . When the value of one parameter is
chosen from a range, those of the others remain unchanged.
A total of 29 images whose defective regions have been
marked manually are used for analyzing the sensitivity of the
parameters. Measures are calculated by taking each defective
region as the basic unit. In the following, we successively
analyze the sensitivities of Tcc of TM, Tmf of MMF, and Trg,
Tsm, and Tarea of RGES.

To verify the sensitivities of Tmf and Tcc, the values of Pr ,
Re, and Fβ are calculated on the annular panel and texture

Fig. 13. Measures when Tcc and Tmf change. (a)Curves of Pr , Re , and Fβ
when Tcc varies from −50 to −15 with step 5. (b) Curves of Pr , Re, and Fβ
when Tmf varies from 2 to 6 with step 1.

Fig. 14. Measures when Trg, Tsm, and Tarea change. (a) Curves of Pr , Re ,
and Fβ when Trg ranges from 4 to 20 with step 4. (b) Curves of Pr , Re, and
Fβ when Tsm ranges from 5 to 25 with step 5. (c) Curves of Pr , Re , and Fβ
when Tarea ranges from 2 to 18 with step 4.

regions of 29 testing images, respectively. As shown in Fig. 13,
it is clear that when Tmf and Tcc are set to the proper values,
the corresponding values of Fβ can achieve the greatest ones
values, i.e., Tm f = 3 and Tcc = −30.

To verify the sensitivities of Trg, Tsm, and Tarea, the values
of all measures are computed on the central panel region
of 29 testing images, and the results are given in Fig. 14. Trg is
the only parameter in the process of obtaining patches for the
panel region. A good parameter setting of Trg can ensure that
the defective regions are divided singly as much as possible,
while Re can measure this ability. Hence, we use Re to verify
the performance of the region growing for defect detection.
Re is inversely proportional to Trg. It is a sensible decision
that we set Trg = 4 for all cases. Tsm and Tarea are parameters
of defect recognition in the central panel region. The larger
the values of Tsm and Tarea are, the smaller is the value of
Re. These phenomena occur because the saliency values and
area values of the defective region are typically larger than the
corresponding thresholds.

C. Method Validation

To evaluate the performance of our framework on the entire
bottle bottom, the first data sets including 1230 bottle bottom
images in total are used for testing. The key parameters are
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TABLE I

QUANTITATIVE INDICES OF THE PROPOSED FRAMEWORK FOR DEFECT
DETECTION. THE BOLDED VALUES DENOTE THE BEST RESULTS

TABLE II

PARAMETER SETTINGS OF OUR FRAMEWORK FOR DETECTING DEFECTS

OF THREE DIFFERENT TYPES OF BOTTLE BOTTOMS

Fig. 15. Defect detection results of three different types of bottle bottoms.

configured as Tcc = −35, Tmf = 12, Trg = 16, Tsm = 30,
and Tarea = 6. The defect detection performances are verified
using the obtained data, the quantitative indices are listed
in Table I. Obviously, the false detection rate appears low
on all the bottom regions. An exception is with the annular
texture region, where the Fd index takes a comparatively
high value due to the complex background and structures.
Generally, the proposed framework performs well on the good
bottle samples with a moderately low over inspection rate
(i.e., Fd ). Moreover, the total precision and false detection
rate are almost equal to the corresponding best results of
these three measurement regions. This phenomenon may occur
because for the final results, the FP errors increase if the tested
bottle bottom is qualified, while the FN errors are accumulated
when the defects are in only one region of the three regions.
Otherwise, the errors are eliminated.

To validate the conclusion that the proposed framework
can be used for many types of bottle bottoms, we test our
framework with three different types of bottle bottoms, which
have large differences in the texture structure. The parameter
settings are given in Table II. Defect detection results are given
in Fig. 15. It is obvious that defects in the three bottom images
can be detected accurately by changing parameter settings,
although the types of bottle bottoms are different.

D. Quantitative Analysis and Comparison

There are four parts addressing the overall bottom inspection
issue. Some steps of the proposed pipeline can be replaced
with other methods. In this section, we compare the methods
of the proposed framework with other existing approaches,
but only on separate steps. For the panel regions, we compare

our methods with AD [34], GTS [54], and ATS [54]. For the
texture region, we compare the proposed template-matching-
based method (TM) with the DFT-based method [24]. A brief
introduction about these comparison methods is given as
follows.

1) AD: He et al. [34] presented an inverse P–M diffu-
sion model for rail surface defect image enhancement
inspired by Tsai’s method [32]. It is mainly composed
of four steps: nonlinear diffusion, difference operation,
threshold binarization, and noise removal. There are
three parameters: k, λ, and Niter, where k is a constant
and acts as an edge strength threshold, λ is a weighting
parameter and Niter denotes the number of iterations.
Consider that the features of a rail surface image are
similar to those of the panel region of bottle bottom
image, we compare AD with our method.

2) GTS and ATS: Image thresholding enjoys a central
position in all types of image segmentation applications
because of its implementation simplicity and computa-
tional speed [54]. Basic global thresholding and adaptive
thresholding using Otsu’s method [55] are two of the
most popular thresholding methods. The former has only
one parameter TGTS, which needs to be set manually.
The latter is parameter-free. They have been applied to
abstract features or to acquire the connected domain
for detecting bottle bottom defects [4], [25]. In this
paper, the central panel region of the bottle bottom
image is first divided into many parts by thresholding.
Then, connected domain analysis is employed on the
segmentation results to obtain all suspected defects.
Finally, the desired defects are distinguished according
to the area and grayscale values of each connected
region.

3) DFT: DFT is the most important discrete transform used
to perform Fourier analysis in many practical applica-
tions [56]. It converts a finite sequence of equally spaced
samples of a function into the same-length sequence
of equally spaced samples of the discrete-time Fourier
transform. Some researchers have found that there is
a definite relationship between the regularity of texture
and the Fourier spectrum. In addition, the 2-D DFT can
be used to remove the regular texturing of a bottle bot-
tom image [24]. The DFT-based method mainly consists
of four parts: DFT, low-pass filtering in the frequency
domain, inverse DFT, and ATS. It is also a parameter-
free method.

To compare the performance of the above conventional
approaches and our methods, first, we accurately mark all
defective regions for 29 tested bottle bottom images, which
are sufficient to evaluate the performances of methods because
there are up to 458, 341, and 147 defective areas in the
central panel, annular panel, and annular texture regions,
respectively. Second, we calculate the precision, recall, and
F-Measure by taking each detected defective region and the
true defective region as the basic unit. Moreover, we obtain
the time consumption (Tcs) of each comparison approach.

1) Circle Detection for ROI Localization: To analyze the
performance of the ROI location method, the boundaries of
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TABLE III

ERRORS OF THE LOCALIZATION RESULTS OF THE 11 TESTING IMAGES
BY THE PROPOSED LOCATION METHOD. THE 13th ROW MARKED AS

“MEAN” IS THE AVERAGE VALUE OF THE

CORRESPONDING RESULT

ROI regions of 11 bottle bottom images are first marked
manually. Then, the center and radius, which are denoted by
X M , YM , and RM , respectively, are obtained by the traditional
Hough transform circle detection algorithm [45].

Finally, the 21HT algorithm is verified on the 11 calibrated
images. The errors of the localization results are shown
in Table III. The mean value of EX is slightly lower than that
of EY because the testing bottle is clamped by two conveyors,
as shown in Fig. 1(a), which can suppress the bottle shifting
in the x-direction. The average value of ER is also small,
lower than four pixels, because the difference in size between
the two bottles that belong to the same bottle type is very
small. In addition, the size is fixed and cannot be affected by
additional factors.

2) Annular Texture Region Defect Detection and Analysis:
a) Parameters setting and testing results: For each

method, we employ a parameter setting method that is similar
to parameter sensitivity analysis to evaluate the performance
and set the optimal parameters. For TM, we set Tcc = −30.
29 annular texture subimages are the inputs to TM and DFT for
testing. The statistical results and some typical visual results
are shown in Table IV and Fig. 16, respectively.

b) Results analysis: As shown in Table IV, we can easily
find that the comprehensive performance of TM is better than
that of DFT. In Fig. 16, we can also discover that small size
low-contrast defects locating at the boundary of the texture
region can be detected by the proposed TM method, as shown
in Fig. 16(b), whereas DFT cannot detect these defects. When
a defect with a small size exists in the center of the texture
region, it is difficult to be detected correctly by TM and DFT,
as shown in Fig. 16(c) and (d). This is a drawback of the
two methods. Note that the values of Pr , Re, and Fβ of these
methods are not very high because there are many disputed
regions that are falsely marked by the normal or defective
flag, for instance, even many large and low-contrast defects
may also be falsely marked, as shown in Fig. 16(c) and (d).
However, these values still have some reference significance
for comparing different methods.

3) Annular Panel Region Defect Detection and Analysis:
a) Parameters setting and testing results: For MMF

and GTS, we set Tmf = 2.3 and TGTS = 140. For AD,

TABLE IV

QUANTITATIVE INDICES FOR DEFECT DETECTION IN THE ANNULAR
TEXTURE REGION. NOTE THAT WE TAKE EACH TESTING SUBIMAGE

AS A BASIC UNIT TO COMPUTE THE MEASURE Ac . FOR EXAMPLE,
FOR TM, Ac = 27/29 DENOTES THAT 27 SUBIMAGES ARE

CORRECTLY DETECTED. THE BOLDED VALUES
DENOTE THE BEST RESULTS

Fig. 16. Visual comparison results of defect detection in the annular texture
region using different methods. (a)–(d) Defect detection results for the annular
texture region of four bottom images. The first to third rows of each figure are
the ground truth, the results of TM and DFT, respectively.

TABLE V

QUANTITATIVE INDICES FOR DEFECT DETECTION IN
THE ANNULAR PANEL REGION

k = 100, λ = 1/2, and Niter = 2. 29 annular panel subimages
are used as inputs of four comparison methods for testing.
The statistical results and typical visual results are shown
in Table V and Fig. 17, respectively.

b) Results analysis: As observed in Table V, it is clear
that MMF can achieve the best performance compared with the
other three methods in terms of precision, recall, F-Measure,
and accuracy. Moreover, MMF is also the fastest method
among the compared approaches. The main advantage is that
many low-contrast defects can be detected by the proposed
MMF because the contrast between saliency regions and the
background region was enhanced by the multiscale mean
filtering algorithm.

4) Central Panel Region Defect Detection and Analysis:
a) Parameter settings and testing results: For RGGS,

parameter settings are Trg = 4, Tsm = 10, and Tarea = 6.
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Fig. 17. Visual comparison results of defect detection in the annular panel
region using different methods. (a)–(d) Defect detection results for the annular
panel region of four bottom images. The first to fifth rows of each figure are
the ground truth, the results of MMF, AD, ATS, and GTS, respectively.

TABLE VI

QUANTITATIVE INDICES FOR DEFECT DETECTION IN

THE CENTRAL PANEL REGION

For RGES, Tarea = 4, and the other parameters are same as
those for RGGS. The parameter settings of AD in this test are
the same as the defect detection test in annular panel region.
For GTS, TGTS = 150. 29 central panel region subimages are
used for testing. The statistical results are shown in Table VI,
and some typical visual results are presented in Fig. 18.

b) Results analysis: The F-Measure, accuracy, and recall
of RGES and RGGS have achieved the highest level among
the considered methods. Meanwhile, precision has a high level.
Furthermore, as observed in Fig. 18, our method has two
merits over the comparative approaches: first, the proposed
method can detect small and low-contrast defects accurately
since we have used the improved saliency detection algorithm

Fig. 18. Visual comparison results of defect detection in the central
panel region using different methods. (a)–(d) Defect detection results for the
central panel region of four bottom images. The first to sixth rows of each
figure are the ground truth, the results of RGGS, RGES, AD, ATS, and GTS,
respectively.

to increase the contrast between suspected defects and the
background region. Second, the proposed method can obtain
accurate boundaries of defective regions, even for those
obscure defects, because we have combined region growing
with the Canny algorithm, which can precisely detect defect
edges.

V. CONCLUSION

In this paper, we have presented a machine vision apparatus
for real-time bottle bottom inspection with improved saliency
detection and template matching algorithms. First, the bottom
is located by 21HT with the shape prior constraint, and it is
divided into three parts: central panel region, annular panel
region, and annular texture region, for defect detection. Then,
separate algorithms are proposed for different measurement
regions. We improved the geodesic saliency detection for
detecting defects in the central panel region. We employed
multiscale mean filtering to inspect defects in the annular panel
region. In the annular texture region, we combined template
matching with multiscale mean filtering for defect detection.
Finally, we used images obtained with our designed system
to perform many experiments. The results revealed that the
majority of defects with a small size and low contrast can
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be inspected correctly. For the three measurement regions,
the proposed algorithms can achieve the highest F-Measure,
accuracy, and recall while having a high level of precision
compared with other methods, where the precision of TM,
MMF, and RGES are 88.83%, 75.95%, and 41.03%, respec-
tively. For the first two methods, the precision increased by
7.88% and 30.12%, respectively. The precision of the last
method is slightly lower than that of ATS, but the recall,
F-measure, and accuracy of RGES are obviously better than
those of the other existing methods. Moreover, the proposed
methods are robust to pixel value fluctuations. There are still
some defects that cannot be correctly detected, particularly
defects with a small size in the texture region. In the future,
we plan to combine the proposed strategy with machine
learning methods to further improve the precision of defect
detection.
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